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Abstract

A time-derivative preconditioning algorithm that

is effective over a wide range of flow conditions from

inviscid to very diffusive flows and from low speed to su-

personic flows has been developed. This algorithm uses

a "viscous" set of primary dependent variables to intro-

duce well-conditioned eigenvalues and to avoid having
a nonphysical time reversal for viscous flows. The re-

sulting algorithm also provides a mechanism for con-

trolling the inviscid and viscous time step parameters

to be of order one for very diffusive flows, thereby en-

suring rapid convergence at very viscous flows as well as

for inviscid flows. Convergence capabilities are demon-

strated through computation of a wide variety of prob-
lems.

1. Introduction

Time-marching algorithms are widely used for the

computation of compressible flows. A major advantage

of these techniques is that they apply to both invis-

cid and viscous flows and can be used in conjunction

with virtually any spatial discretization in all Reynolds
number regimes. In the past two or three decades, time-

marching schemes have been widely accepted and ap-

plied as the method of choice for transonic, supersonic,
and hypersonic flows.

In the low subsonic Mach number regime, time-
marching algorithms do not fare as well. When the flow

velocity becomes small in comparison with the acoustic

speed, the time-dependent equations become stiff and

time-marching methods converge very slowly. These
difficulties are aggravated if the Reynolds number also

becomes small. Many problems, however, contain some
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regions with low Mach numbers while other regions are

decidedly compressible so that the compressible equa-

tions have to be used throughout. Consequently, one

must deal with the stiffness of the equations. Repre-

sentative problems that contain both compressibility

effects and low-speed regions can be grouped into two

classes: high-speed flows with embedded regions of low

velocity; and low-speed flows with temperature differ-

ences arising from strong heat addition. Examples of
such flows are described below.

High-speed flows with embedded regions of low
velocity are typified by external, transonic flow with

embedded low-speed regions near stagnation points or

by internal flows with low velocity flow upstream of a

choked area. These embedded regions have little effect

on convergence when the low-speed region is small, but
they can dominate convergence when the region is large.

For example, the low-speed region near the stagnation

point of an isolated airfoil is seldom large enough to

affect convergence, but the subsonic flow upstream of a

strongly converging nozzle may control the convergence

process.
Low-speed flows that are compressible because of

density changes induced by heat addition can be rep-

resented by problems with surface heat transfer or vol-

umetric heat addition. The most common example of

volumetric heat addition occurs in combustion prob-

lems, but additional problems of interest include ad-

vanced space propulsion concepts such as laser, solar,

and microwave thermal propulsion [1] in which elec-

tromagnetic radiation is used to heat a flowing gas. In
problems such as these, the equations frequently remain

stiff over the entire computational domain, so that ef-

ficiency requirements make it imperative that the stiff-

ness be dealt with directly.

Several previous researchers [2-12] have considered

the low Mach number problem for inviscid flows. The

present paper is directed towards viscous flows.

2. Previous Work on Eigenvalue Control

Two distinct methods have been suggested for con-



trollingeigenvaluestiffnessat lowspeedsto enhance
convergence.Thefirstistopremultiplythetimederiva-
tivebyasuitablematrixthatscalestheeigenvaluesof
thesystemto thesameorderof magnitude.Theother
isto useaperturbedformoftheequationsin whichthe
physicalacousticwavesarereplacedbypseudo-acoustic
modes.Wereferto theformeraspreconditioningand
to thelatterasaperturbationprocedure.Theprecon-
ditioningmethodhasthe advantagethat it provides
a globalsolutionthat is validat all Machnumbers,
whereastheperturbationmethodis validonlylocally
in theregimein whichtheperturbationiscarriedout.

A numberof preconditioningstudieshavebeenre-
portedpreviously.Viviand[2] consideredgeneralized
preconditioningproceduresforaclassofhyperbolicsys-
temsrepresentingtheEulerequationsandgivesspecific
rulesthatensurethat thepreconditionedequationsre-
mainwellposed.Additionaldetailsconcerningpre-
conditioningarepresentedby PeyretandViviand[3],
whoaretheonlyonessofar to considerprecondition-
ingin viscousflows.Turkel[4]alsodiscussesprecon-
ditioningwith applicationsto bothcompressibleand
incompressibleflows.Finally,Stortiet al. [5]havepre-
sentedsomerecenttheoreticalworkoneigenvaluecon-
trolthatagreeswellwithViviand'sfindings.References
2through5areprimarilytheoreticalinnatureandcon-
siderthegeneralizedconceptofpreconditioninginany
computationalregime,notjust thelowMachnumber
regimewith whichwearehereconcerned.Numeri-
calstudiesofpreconditioningin thelowMachnumber
regimehavebeenreportedbyBrileyet al. [6]forisoen-
ergeticsystemsandbythepresentauthorsandtheirco-
workers[7-9]fortheEulerequations.LowMachnum-
berconvergenceenhancementbyBrileyetal. waslim-
itedto Machnumbersabove0.05.Ourresultsdemon-
stratedthatpreconditioningprovidedMachnumberin-
dependentconvergenceat all Machnumbersbetween
0.7and10-6, Inaddition some applications of "time in-

clining" have been reported by Dannenhoffer and Giles

[10]. All of these previous works have considered the
inviscid equations.

The second general method for eliminating eigen-

value stiffness is to use a perturbed form of the equa-

tions of motion. The present authors [8,11] have used
an expansion of the flow variables in terms of the Mach

number squared to remove the physical acoustic waves

and replace them by a set of pseudo-acoustic waves

whose speeds are comparable to the particle velocity. A

similar perturbation procedure has also been developed

by Guerra and Gustafsson [12] based upon expansion

in Mach number. The perturbation method is effec-
tive for both viscous and inviscid flows and has been

implemented for numerous applications [13-15]. Other

perturbation procedures include the one by Rehm and

Baum [16], which is specialized toward combustion

problems and has been applied by several authors in-

cluding Chenoweth and Paolucci [17] and McMurtry et

al. [18]. Although these perturbation procedures are

robust, the nature of the perturbation limits their us-

age to low subsonic flows. Specifically, the methods

are not adequate for the transonic flow regime. Our

focus here is on the preconditioning methods, but we

take advantage of knowledge gained from perturbation

methods to develop the preconditioning matrix.

To date, applications of preconditioning to viscous
flows have not been reported. We attempted several

numerical studies for viscous flows using the precon-

ditioning method of [7,9] and found that it is not ef-
fective in viscous flows. Accordingly, the purpose of

the present paper is to develop a method which gives

reasonable convergence for all Reynolds number ranges

while keeping its effectiveness in inviscid flows as in the

previous method.

3. Problem Formulation

3.1 Equations of Motion

The two-dimensional compressible Navier-Stokes

equations using time-derivative preconditioning can be

written in the following vector form :

OQ OE OF

F--_ + _ + _y = H + L(Qv) (1)

where F is the preconditioning matrix and will take on

various forms depending on the preconditioning chosen.

When F is the identity matrix, we recover the standard

(nonpreconditioned) equations. The vectors in Eq.(1)
are

Q : (p, ptt, pv,e) T

E = (p,,,pu + v, p,,,,, + v)u)r
F = (pv, puv, pv 2 + p, (e + p)v) T (2)

H = (0, O, -pg, q - pgv) T

Ov = (P, u, v, T) T

In these expressions, the dependent vector Q and the
inviscid flux vectors E and F take their standard form,

and H is the source vector, which contains both a vol-

umetric heat addition rate and a gravitational body

force. The vector Q_ represents the "viscous" variables

that appear in the diffusion operators.

The variables in Eq.(2) are defined by standard no-

tation including density p, velocity components u and

v, pressure p, temperature T, Mach number M and to-

tal energy per unit volume e. The coordinate system is
oriented so that the gravitational body force is in the



negativey-direction.Heatisaddedto theflowbyspec-
ifyingtheformofthevolumetricheatadditionfunction
q. Thegravitationaltermpgv is the work done by the

gravity force. The pressure obtained from the perfect

gas relation is

P---(7-1)(e P 2 (3)

where 7 is the ratio of specific heats.

The differential operator for the viscous terms L is

low Mach number formulations using perturbation ex-

pansions for compressible flow [8,11]. The low Mach

number formulation with this set of variables proves to

give unconditionally stable results for both inviscid and
viscous calculations.

In order to simplify the algebra, first we transform

the conservative form of Eq.(1) to the non-conservative
form. We define the non-conservative vector as

0 -- (P, U, V), p)T (6)

O R O 0 0 0_ 0 0 0
L=0 u,

(4)

The matrices R_, Rry, Ryr, and R_ are diffusion co-
efficient matrices that include the viscosity p and the

thermal, conductivity k:

Rx_ _

Ry_

(ioo (!oo0 # # 0

_#u pv pv -_#u
(5)

ooi)(ooo0 # 0 # 0
-_ # 0 R'uY = 0 0 4#

0 -_;v pu 0 0 #u _;v

In these expressions, Stoke's hypothesis is used for the

second coefficient of viscosity (_ = -23 #).

3.2 Development of Preconditioning Procedure

The preconditioning matrix that was chosen in our

earlier work [7,9] left the continuity and momentum
equations in their traditional form but modified the en-

ergy equation such that time derivatives of p, pu, and

pv were added. Both stability analyses and numerical

experiments showed that this preconditioning matrix

was effective for a wide variety of low Mach number

inviscid calculations [7,9]. Stability analysis of the full

Navier-Stokes equations, however, as well as numerical

experiments shows it is unstable at low Reynolds num-

bers. Detailed analysis [8] indicates that this instability

depends primarily upon the Prandtl number. This de-

pendence suggests that the modified energy equation
may no longer be well posed in the diffusion limit. To

circumvent this difficulty, a new preconditioning matrix
that is effective both in inviscid and viscous calculations

is developed in the present paper.

The basic idea of the new time-derivative precondi-

tioning procedure is to employ a "viscous" set of depen-

dent variables (Q_) as the primary dependent vector.
This set of variables is inspired by artificial compress-

ibility methods for incompressible flow [4,7] as well as

where the tilde represents the non-conservative vari-

able. We then premultiply Eq.(1) by the Jacobian p-l

= OQ,/OQ to obtain

OQ 10E OF
"_ + P- (-_x + _y) = P-I(H + L(Q,,))

(7)

i) Here the preconditioning matrix is dropped for the time
being.

One convenient method for obtaining a new pre-

conditioning matrix, as well as for transforming the

0 \ (p, u, v, p) system to the (p, u, v, T) system, is as fol-

0_ lows. First we subtract the continuity equation from

0 ) the energy equation. This introduces the temperaturek form of the time derivative into the energy equation
(Op/Ot in the continuity equation is replaced by OT/Ot
by means of the perfect gas law.) This temperature

form of the time derivative also appears well-suited to

the heat diffusion term. The vector form of this step is

obtained by premultiplying Eq.(7) by a matrix K1.

OQ, 1 OE OF.

Kx--_+KtP- ("_z+"_y)= K1P-t(H+L(Qv)) (8)

where the sparse matrix Kt is

KI = Diag(1,p,p, 1),

with nonzero element (4,1) = -TRT (9)

We then convert the dependent vector 1_ to Qv by using

the chain rule,

h_ OQ_ _ _ l.OE OF
xI_2-_ + KtI-'- (-_x +-_y ) = KIP-I(H + L(Q_))

(10)
where K2 is defined as the Jacobian, K2 = O(_/OQ_.

Now we precondition Eq.(10) by premultiplying the

time derivative term by r_ K_" 1Ki- 1 to get

O_ I OE OFVv " +KIP- ('_x + "ff_,,) = IQP-I(H + L(Q_))

(11)



wherethepreconditioningmatrixF_isdefinedas

F_= 0 p 0
0 0 p

(1-3') 0 0 3'pR

(12)

This choice of the preconditioning matrix F_ intro-

duces the artificial compressibility formulation of the

continuity equation and modifies the energy equation
to its classical temperature form, while keeping momen-

tum equations in their standard form. These equations

are also nearly identical to the perturbation equations

used extensively [8,11,13-15]. Here, J3M 2 is a scaling

parameter (M is Mach number), the proper choice of
which is discussed later. Note that the momentum and

energy equations now appear to be well-suited for vis-

cous effects, since they are all of the form

(13)
0¢

where _ represents u, v, and T, respectively.

The corresponding time-derivative preconditioned

system for the conservative form of the equations is

readily found by premultiplying Eq.(ll) by PK11.

- OQ_ OE OF

F7ut + _x + -_y = H + L(Q,,) (14)

Here F, defined as F=PK7IF_, is

/ o o o)' , o o- 0 p 0 (15)

...v
The eigenvalues of the preconditioned system of

equations (14) are

u(1 + __M__ + c'
-I RT ]

A(t-ZA_) = (u,u, 2 ) (16)

where Av=OE/OQv and the pseudo-acoustic speed ca is
defined as

e,2 = u2(1 _ /3M2 )2 + 4f_M 2
7RT"

(17)

In order to get well-conditioned eigenvalues for

the inviscid case, we choose the scaling parameter

]3=kTRT, where k is a parameter to he determined
later. For values of k of order unity, this choice of fl al-

lows the pseudo-acoustic wave speed c_ to be the same

order as the particle velocity u and ensures that three

eigenvalues are always positive, while one is negative
for subsonic flow.

3.3 Convergence Control at Low Reynolds Numbers

The stability analysis of Eq.(14) shows that the

new preconditioning algorithm provides appropriate
stability for all Reynolds and Peclet numbers. This

new preconditioning algorithm appears to be at least

as good as the original preconditioning algorithm for
inviscid flow and is a dramatic improvement over the

original one for viscous flows. At low Reynolds num-

ber flow (below Re=500), however, stability character-
istics show that amplification factors approach unity,

suggesting slow convergence rates. The reason for this
behavior can be understood by considering the viscous

time step parameter (hereinafter referred to as the yon

Neumann number) a=pAt/pAx 2, which becomes im-

portant at low Reynolds numbers. Control of the CFL

number alone at low Reynolds number makes the von

Neumann number so large that the approximate factor-
ization error in the diffusive terms slows convergence.

For efficient convergence, we should control both the
CFL number and the yon Neumann number to be or-

der of unity simultaneously.

In the present paper, the simultaneous control of
both the CFL number and the von Neumann number

is obtained by choosing the scaling parameter k in the

definition ft. The parameter k is chosen as unity (/3=

7RT) to get well-conditioned eigenvalues for the invis-
cid terms. In low Reynolds number flow, however, we

use this parameter to specify both CFL and von Neu-

mann numbers. In the inviscid limit, we choose the

time step by an appropriate CFL number,

CFL = (u(1 + kM _) + c')At (lS)
2Ax

while in the viscous limit the appropriate viscous time

step parameter is the von Neumann number. By solv-

ing Eq.(18) and the above yon Neumann number defi-
nition for k, we find

k = a(a- 1) (19)
M2(c_- 1 + u'7-_-)

where oc is CFL/o'Rea,: and Rea_ isthe cell Reynolds

number (=puAx/p). Now, by setting the CFL number
and the yon Neumann number to order unity and com-

puting other variables from given conditions, we can

obtain the scaling factor k. In general, for a wide range

of Reynolds number, the parameter k can be expressed
as

k = Max[l, a(a- 1) ] (20)
M_(a- l + u:_)



4. Numerical Solution Procedure

Appropriate preconditioning enhances convergence

of either explicit or implicit algorithms [9]. Here, the

numerical solution of Eq.(14) is obtained by using an

Euler implicit discretization in time along with central

differencing in space. For the efficient solution of the

resulting matrix, we use an approximate factorization

such as the Douglas-Gunn procedure [19,20]. This leads
to

OA 0 0+ ,ats-'( o. )1
OB 0 0

[z+ Ats-x(N )]zxo°= -AtS- 1R

(21)

where R is the residual of the steady state version of

gq.(14)
OR OF

R = "_x + _y - L(Q_) - H (22)

Here A, B and D are Jacobians of the vectors E, F, and
H and the matrix S is defined as S = F - AtD. This

formulation differs from the traditional approximately
factored algorithm only in the calculation of the precon-

ditioning matrix, and hence additional computational

cost is negligible.

5. Boundary Conditions

In the present study, Method of Characteristics

based boundary conditions [11] are used at inflow and

outflow boundaries. In this procedure, it is impera-

tive to incorporate the preconditioning matrix to re-

flect the character of pseudo-acoustic waves. To apply

the Method of Characteristics procedure, we first pre-

multiply Eq.(21) by the modal matrix M -1 containing

the left eigenvector of the :lacobian P-1A (or F-1B) at

a constant x (or y) boundary. We then multiply the
result by a selection matrix L that selects those charac-

teristic equations that represent outgoing information

at the boundaries to give

LM-X[I + AtS-I-O_x][I + AtS-I(_y OR _y)]AQ_-- _y YY

= -AtLM-1S-1R (23)

In Eq.(23), the selection matrix L has different
forms depending on the boundaries of interest. For in-

flow boundaries where the flow is subsonic, L becomes

L = Diag (0, 0, 0, 1), where the nonzero entry repre-

sents the outgoing characteristic equation (u-c'), while

the zero entries require physically meaningful boundary

conditions be specified. For the present study, stagna-

tion pressure, stagnation temperature, and flow angle

(v/u) are fixed.

The outflow boundary conditions are also obtained

in a similar way. When flow is subsonic, a selection

matrix is L = Diag (1, 1, 1, 0) and a constant static
pressure is imposed. For supersonic flow, the selection

matrix L becomes the identity matrix and no boundary

condition needs to be specified.

The boundary conditions imposed on the solid sur-

face are the no-slip conditions and the normal pres-

sure gradient condition obtained from the normal mo-
mentum equation. In addition, either a constant wall

temperature or an adiabatic wall condition is specified

depending on the problem. The axis of symmetry is

treated as a regular field point using symmetry condi-
tions in lieu of boundary conditions.

6. Results

Representative results have been obtained for var-

ious problems including flow past an isolated airfoil,

flow through a converging nozzle, and flow in a ther-

mally driven cavity. In all cases it was demonstrated

that the preconditioning changed only the rate of con-

vergence, not the final results. Consequently, we fo-

cus on comparing the convergence rates of the various

problems with and without preconditioning. The sav-

ing realized with preconditioning ranges from a factor
of two to several orders of magnitude.

6.1 Flow Past an Isolated Airfoil

The first test problem considers inviscid and vis-

cous flow past a NACA0012 airfoil at zero angle of

attack. A C-type grid (56x31) is used and the outer
boundary is located 5 chord lengths away from the air-

foil. Since the flowfield is symmetric, only the half do-
main is considered. For the wall, a slip boundary con-

dition is used for inviscid flows, while no-slip, constant

wall temperature, and zero normal pressure gradient

are specified for viscous flows. At the outer bound-

ary, a stagnation pressure, a stagnation temperature,
and an inflow angle are specified at the inflow region,

while a constant pressure is specified at the downstream

end. The remaining conditions come from the Method
of Characteristics. The outer free stream Mach number

is 10 -4 .

Figure 1 shows the convergence characteristics us-

ing preconditioning for a wide range of flow conditions
from inviscid flow to a very viscous flow of Re=l. The

inviseid case indicates a rate of convergence of one

order of magnitude per 200 iterations. Convergence

without preconditioning required some 100,000 itera-

tions for one order of convergence. For viscous cases

at Reynolds numbers of 1, 100, and 1000, it can be

seen that the convergence rate is faster than that of
the inviscid case by a factor of two. This convergence



enhancementmaybebecausephysicaldiffusionserves
to dissipate the errors in the solution more rapidly. At

Re=10000, however, a slight slowdown in convergence
can be noted. This is because divergence was noted

when the same CFL number (CFL=6) as that used in
the low Reynolds number calculations was employed.

In all cases, it is clear that the preconditioning proce-

dure enables convergence at these very incompressible

flow speeds with efficiencies that are competitive with

those normally observed in subsonic flows.

The corresponding velocity fields for the three

Reynolds number eases are shown in Fig.2. The

top figures show full domain solutions, while the bot-

tom figures show magnified results around the airfoil.
At Reynolds number 1, the flow is nearly symmet-

ric around the airfoil, approaching Stokes flow. As

Reynolds number increases, the boundary layer gets

thinner and at Reynolds number of 10000, separation

is observed at 80 % chord. The solution accuracy has

been verified by comparing the pressure coefficient with
incompressible panel method results for the inviscid

case but this comparison is not presented for reasons

of space.

6.2 Flow Through a Strongly Converging Nozzle

The second test problem concerns the flow through
a converging-diverging nozzle. This test problem typi-

fies a high-speed flow with an embedded region of low

velocity in which the compressibility effect is signifi-
cant due to the presence of transonic flow. Two nozzle

geometries are considered with area ratios (AR) of 10
and 200. These nozzle geometries are of interest to us

for applications in solar propulsion [1], which require

large convergence because of the dilute nature of solar
radiation.

First we present convergence characteristics with-

out preconditioning for AR=10 for several Mach num-

bers in Fig.3. The calculations are made for invis-

cid flows, and the nozzle geometry is shown in Fig.4.

Throughout the calculations, an H-grid (71x31) is used
and the same CFL number is employed. The Math

numbers shown in Fig.3 correspond to the Mach num-
bers at the throat region. For the M=I.0 case, the

Mach number variation in the flowfield ranges from

M=0.05 in the upstream section to M=I.6 at the nozzle

exit, while for the M=0.1 case, it ranges from M=0.01
in the upstream section to M=0.08 at the exit. It can be

noted that from M=0.7 to 1.0 cases, convergence rates
are nearly the same and it takes 2000 steps to reach

the 10 -a level. This convergence rate is slow at least

by a factor of seven, compared to the one with precon-
ditioning shown in the same figure. The convergence

rate with preconditioning can be understood as the one

without preconditioning for high subsonic speed flow,

and thus the convergence comparison suggests that the

embedded low subsonic flow dominates the convergence

process and slows the convergence rates. It is also inter-

esting to note that for the M=I.0 case even though the

flow passes the sonic line where an eigenvalue stiffness

exists, the convergence rate is not affected and main-

tains the same convergence rate as the M=0.9 case.

This suggests that smMl regions with the sonic value
may have little effect on the convergence rates. For

Mach numbers below 0.5, they gradually start to slow

as Mach number decreases, as expected.

Additional calculations for AR=10 and AR=200

for viscous flows were made. The 71x31 grid for AR=10

and the 100x50 grid for AR=200 are used, and they are

highly clustered to the wall. In both cases, calculations

go through the transonic region. Reynolds numbers
based on the throat diameter are 6xl0 s for AR=10 and

9x10 s for AR=200, respectively. Corresponding Mach

number results using the preconditioning method are

shown in Figs.4 and 5. Because of the strong nozzle

convergence, the Mach numbers in the upstream section

are about 0.05 (for AR=10) and 0.002 (for AR=200),
respectively. Without preconditioning it is found that

the solutions are not developed, particularly in the up-

stream section where the Mach number is low. In Fig.6,

the convergence rates with and without preconditioning

are compared. Without preconditioning, it takes 450

steps for AR=10 and 2100 steps for AR=200 to reduce

one order of magnitude in AQ/Q, while with precondi-

tioning it takes 50 steps for AR=10 and 100 steps for
AR=200. Tt.us, the preconditioning method enhances

convergence rates by a factor of nine for AR=I0 and

twenty one for AR=200, respectively.

6.3 Flow in a Thermally Driven Cavity

Our final test problem considers a buoyancy-driven

flow in a square enclosure. The configuration consists
of two insulated horizontal walls and two vertical walls

at temperatures Th and To. Even though this prob-
lem has been a classical natural convection problem

for many decades, most studies are based on the in-

compressible formulation with the Boussinesq approx-

imation [21], which requires a small temperature dif-
ference between the vertical walls. However, practical

applications, such as furnace or nuclear reactor design,

require much larger temperature differences, and com-

pressible formulations without the Boussinesq assump-

tion should be employed. Thus, for the present study,

this problem is chosen as representative of a group of

low-speed flows that are compressible because of den-

sity changes induced by surface heat transfer.

It is known that this problem exhibits com-

plex flow features depending on the Rayleigh num-

ber (Ra=p2gj3(Th -Tc)LaCp/pk), the aspect ratio,



and the temperature difference parameter (e = (Th -
Tc)/(Th + To)). Here _ is the thermal expansion coef-

ficient and L is the enclosure length. For the present

study, three Rayleigh number cases, Ra=103,105, and

106 , are considered with the temperature difference pa-

rameter • = 0.6. The aspect ratio of this problem is

one and the transport properties (/_ and k) are evalu-

ated by using Sutherland's law. The Prandtl number

based on reference transport properties is 0.7. A 61x61

uniform grid is used for Ra=10 z, and a 91x91 uniform

grid is used for Ra=105 and 106.

Convergence rates with preconditioning for the

three cases are shown in Fig.7. In all cases, the conver-

gence behavior shows two distinct slopes. At the initial

stage, convergence is fast, but it slows down after a

certain step. The most prominent case is Ra=103. At

the initial convergence process, 80 steps are required

for one order of magnitude drop of AQ/Q, but after

500 steps the convergence rate becomes much slower

and 1000 steps are required for one order of magnitude

drop of AQ/Q. The reason for this convergence behav-

ior is uncertain, but some possible reasons may include

use of a nonoptimum CFL number or an improper time
scaling parameter. A further study to understand this

behavior is necessary. The convergence rate with pre-

conditioning, however, is fast enough to get solutions
in reasonable CPU times.

Figure 8 shows streamline and temperature isolines

for Ra=103,105, and 106. It is well known that solu-

tions with the Boussinesq approximation display a full

antisymmetric flowfield with respect to the center of

the enclosure. The present results show a pronounced

difference and the flowfield is asymmetric. At Ra-=103,
the shift of center of vortex towards the cold wall and

downwards to the lower wall of the enclosure is man-

ifest. In all cases, the basic form of the flowfield is a

recirculating roll. This recirculation is driven by vor-

ticity generated by the horizontal temperature gradient

(OT/_x). At Ra=103, OT/Oz is negative over the entire

flowfield and a single primary clockwise rotating roll is
formed. At Ra=10 _ and 106, there are two secondary

rolls embedded in the single roll base flow. These sec-

ondary rolls are generated because at high Ra numbers

the intense development of thermal boundary layers in

the vicinity of the wall leads to the opposite sign of
OT/Oz. Also it can be noted that as Ra increases, the

secondary rolls intensify and their centers move towards

the side walls. The accuracy of numerical solutions is

verified by comparing the Nusselt number at the left

side wall with a correlation by Chenoweth and Paolucci

[17] in Fig.9. Good agreement can be observed for all
three cases.

Summary

Extension of the time-derivative preconditioning

method to viscous flows has been considered. A previ-

ously developed preconditioning method fails in viscous
flows because of nonphysical time reversal for diffusive

terms. In order to circumvent the difficulty, a "viscous"

set of primary dependent variables is introduced. With

these primary dependent variables, the equations de-

generate to the classical diffusion equations in the limit

of highly diffusive flows. The proper scaling of the time
derivatives is made to obtain well-conditioned eigenval-

ues for efficient convergence in inviscid flows. The re-

sulting algorithm also provides a mechanism for keeping
both the yon Neumann number and the CFL number

of order one at very viscous conditions, thereby ensur-

ing rapid convergence at low Reynolds numbers. The
quantitative effects of the new preconditioning method

on the convergence of a time-marching algorithm have

been investigated for several types of problems. It is

shown that convergence enhancement of the precondi-

tioning method ranges from a factor of two to several

orders of magnitude.
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